
ACPD
13, 32483–32528, 2013

Dust emission by
cyclones

S. Fiedler et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

Atmos. Chem. Phys. Discuss., 13, 32483–32528, 2013
www.atmos-chem-phys-discuss.net/13/32483/2013/
doi:10.5194/acpd-13-32483-2013
© Author(s) 2013. CC Attribution 3.0 License.

Atmospheric 
Chemistry

and Physics

O
pen A

ccess

Discussions

This discussion paper is/has been under review for the journal Atmospheric Chemistry
and Physics (ACP). Please refer to the corresponding final paper in ACP if available.

How important are cyclones for emitting
mineral dust aerosol in North Africa?
S. Fiedler1, K. Schepanski2, P. Knippertz1,*, B. Heinold2, and I. Tegen2

1School of Earth and Environment, University of Leeds, LS2 9JT Leeds, UK
2Leibniz Institute for Tropospheric Research (TROPOS), Permoser Str. 15, 04318 Leipzig,
Germany
*now at: Karlsruher Institute of Technology, Kaiserstr. 12, 76131 Karlsruhe, Germany

Received: 6 November 2013 – Accepted: 26 November 2013 – Published: 10 December 2013

Correspondence to: S. Fiedler (eesfi@leeds.ac.uk)

Published by Copernicus Publications on behalf of the European Geosciences Union.

32483

http://www.atmos-chem-phys-discuss.net
http://www.atmos-chem-phys-discuss.net/13/32483/2013/acpd-13-32483-2013-print.pdf
http://www.atmos-chem-phys-discuss.net/13/32483/2013/acpd-13-32483-2013-discussion.html
http://creativecommons.org/licenses/by/3.0/


ACPD
13, 32483–32528, 2013

Dust emission by
cyclones

S. Fiedler et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

Abstract

This study presents the first quantitative estimate of the mineral dust emission asso-
ciated to atmospheric depressions and migrating, long-lived cyclones in North Africa.
Results from a tracking algorithm are combined with dust emission flux calculations
based on ERA-Interim data from the European Centre for Medium-Range Weather5

Forecasts for 1989–2008. The results highlight that depressions are abundant and as-
sociated with 55 % of the dust emission amount annually and spatially averaged over
North African dust sources. Even larger contributions to dust emission from depres-
sions are found south of the Atlas Mountains during spring with regionally up to 90 %.
It is spring when the largest monthly totals of 250–380 gm−2 of dust emission occur in10

North Africa. The remaining months have a total dust emission smaller than 80 gm−2.
In summer, depressions, particularly Saharan heat lows, coincide with up to 90 % of
the seasonal total dust emission over wide areas of North Africa.

In contrast to depressions, migrating cyclones that live for more than two days are
rare and are associated to 4 % of the annual and spatial dust emission average. Migrat-15

ing cyclones over North Africa occur primarily in spring north of 20◦ N with eastwards
trajectories and typical life times of three to seven days. Regionally larger seasonal to-
tals of dust emission are associated to cyclones with up to 25 % over Libya. In summer,
near-surface signatures of African Easterly Waves (AEWs) emit regionally up to 15 %
of the total emission. The diurnal cycle of dust emission underlines that emission as-20

sociated to cyclones at mid-day is substantially larger than at night by a factor of three
to five. Soil moisture weakens dust emission during cyclone passage by 10 %. Despite
the overall small contribution of migrating cyclones to dust emission, cyclones coincide
with particularly intense dust emission events exceeding the climatological mean flux
by a factor of four to eight. This implies, that both depressions and migrating, long-lived25

cyclones are important for dust emission in North Africa.
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1 Introduction

The accurate simulation of mineral dust aerosol in the Earth system is one of the great
challenges of current atmospheric research. Dust aerosol is important due to its pro-
posed but uncertain effects on the radiation transfer in the atmosphere with implications
for the water and energy cycle, as well as effects on eco-systems and humans (Carslaw5

et al., 2010; Shao et al., 2011; Knippertz and Todd, 2012, and references therein). De-
spite these impacts of dust aerosol, estimates of the annual total of dust emission from
state-of-the-art climate models vary from 400 to 2200 Tg for North Africa (Huneeus
et al., 2011), the largest dust source on Earth. Further reduction of this modelling un-
certainty depends on improving the representation of dust emission. Both the realistic10

description of soil properties and meteorological mechanisms for peak wind generation
are important. The wind speed near the surface is particularly crucial as it controls the
onset of dust emission, and the magnitude of the flux non-linearly (e.g. Marticorena
and Bergametti, 1995; Tegen et al., 2002).

A systematic analysis of mechanisms generating peak winds strong enough for mo-15

bilizing dust provides the basis for evaluating dust emission from atmospheric models.
Recently a number of studies have addressed meteorological processes for dust emis-
sion with a clear focus on the meso-scale. Cold pool outflows from convective down-
drafts (haboobs) are suggested as an important dust storm type in summertime West
Africa (Marsham et al., 2011; Heinold et al., 2013). A 40 day horizontally high-resolved20

simulation suggests that haboobs generate about half of the dust aerosol amount in
this region, but a physical parameterization for atmospheric models with coarse spatial
resolution is currently missing (Heinold et al., 2013). Another important process for dust
emission is the nocturnal low-level jet (NLLJ), which frequently forms in North Africa
(Schepanski et al., 2009; Fiedler et al., 2013). Based on a 32-yr climatology, up to 60 %25

of the dust emission is associated to NLLJs in specific regions and seasons (Fiedler
et al., 2013).
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The main meteorological driver for the largest dust emission amount of the continent
that occurs north of 20◦ N between December and May (Fiedler et al., 2013), however,
is not well quantified. It is this time of year when cyclones affect the region (e.g. Alpert
and Ziv, 1989; Winstanley, 1972; Hannachi et al., 2011). The core of these cyclones
can either lie over the continent itself or further north in the Mediterranean region (e.g.5

Maheras et al., 2001; Schepanski and Knippertz, 2011). Several studies suggest that
cyclones can cause dust storms (Bou Karam et al., 2010; Hannachi et al., 2011; Schep-
anski et al., 2009; Schepanski and Knippertz, 2011), although a case study by Knip-
pertz and Fink (2006) for the exceptionally strong and continental-scale dust storm
in March 2004 gives evidence that a cyclone only produces one part of the associ-10

ated dust emission. The remaining dust mobilization is linked to strong northeasterly
Harmattan winds. These Harmattan surges manifest themselves by an increased hor-
izontal pressure gradient between the post cold frontal ridge and the prevailing low
pressure over the continent. Harmattan surges can lead to continental scale dust out-
breaks with subsequent transport towards the Sahel, Atlantic Ocean and beyond. Klose15

et al. (2010) show that about half of dust suspended over the Sahel may be linked to
a pressure pattern typical of Harmattan surges: a low over the Arabian Peninsula and
the Azores High expanding eastwards into the continent. The mass of dust emission
associated to cyclones has not been estimated before. The aim of the present study is
to reveal how much dust emission is linked to migrating cyclones affecting North Africa.20

Previous work on cyclones influencing North Africa focus on the meteorological
analysis in the Mediterranean basin. Alpert et al. (1990) use five years of analysis
data from the European Centre for Medium-Range Weather Forecasts (ECMWF) for
analysing Mediterranean cyclones statistically. A longer time period of 18 yr of ECMWF
re-analysis is exploited by Trigo et al. (1999) for cyclone tracking. The contributing fac-25

tors of cyclogenesis in the Mediterranean region is investigated later by Trigo et al.
(2002). Maheras et al. (2001) present a 40-yr climatology of surface cyclones based
on re-analysis from the National Centers for Environmental Prediction (NCEP) and un-
derline the variability of both the position and the core pressure of cyclones with the
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time of day. Since the method does not have a criterion for cyclone migration, the clima-
tology by Maheras et al. (2001) includes heat lows and orographic depressions. NCEP
data is also used for a springtime climatology of cyclones north of 20◦ N for 1958–2006
(Hannachi et al., 2011). Hodges et al. (2011) compares cyclone climatologies derived
from state-of-the-art re-analysis showing spatial differences of track densities and cy-5

clone intensity. All of these studies highlight distinct regions that are prone to frequent
cyclogenesis. These are over sea the Aegean Sea, the Gulf of Genoa and the Black
Sea (Trigo et al., 2002). Regions of frequent cyclogenesis in northern Africa lie to the
south of the Atlas Mountains, and east of the Hoggar Mountains (Alpert and Ziv, 1989;
Trigo et al., 1999; Maheras et al., 2001; Schepanski and Knippertz, 2011; Winstan-10

ley, 1972). Cyclones may further form or intensify over Libya, also termed Sharav or
Khamsin cyclones (Alpert and Ziv, 1989, e.g.) which are thought to be the main driver
for dust transport towards the Eastern Mediterranean (Moulin et al., 1998; Winstanley,
1972). Classically the term “Sharav” is used for heat waves in Israel, for which cy-
clones from Africa are one of the meteorological conditions (Winstanley, 1972). Most15

of the cyclones in the Mediterranean basin form between December and May, when
the temperature contrast between land and sea is largest.

Cyclogenesis in Northwest Africa occurs east of an upper level trough where positive
vorticity advection supports the formation of a depression near the surface. These
troughs advect cool air masses at their western side towards the Sahara and transport20

Saharan air northwards at their eastern side (e.g. Maheras et al., 2001; Knippertz
and Fink, 2006). The interaction with orography can lead to cyclogenesis at the lee
side of mountain ranges. In North Africa, the position of lee cyclogenesis is typically
the southern side of the Atlas Mountains (e.g. Schepanski and Knippertz, 2011; Trigo
et al., 2002). Migrating lee cyclones usually follow east- to northeastward trajectories25

with propagation speeds around 10 ms−1 (e.g. Alpert and Ziv, 1989; Alpert et al., 1990;
Bou Karam et al., 2010; Hannachi et al., 2011). They can advect hot, dry and dusty air
towards the Eastern Mediterranean, but may also bring rainfall (Winstanley, 1972) with
flood risk in Israel (Kahana et al., 2002). Unusually deep cyclones over the Western
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Mediterranean that move from Algeria northwards are documented for winter that can
cause high impact weather (Homar et al., 2002, 2007; Homar and Stensrud, 2004).

In contrast to cyclones at the northern fringes of the continent, low latitudes are char-
acterized by shallow depressions. Depressions in form of heat lows build in response
to strong solar irradiation, the location of which changes in the course of year. In North5

Africa the heat low moves from positions near the equator in the east between Novem-
ber and March towards West Africa between April and October (Lavaysse et al., 2009).
The Saharan heat low during summer is typically quasi-stationary over several days to
weeks (Todd et al., 2013) and coincides with high concentrations of dust aerosol (e.g.
Knippertz and Todd, 2010).10

A migrating depression type originating in low-latitudes is the Sudano-Saharan de-
pression the concept of which is described in classical literature and has recently been
revised (Schepanski and Knippertz, 2011, and references therein). These depressions
form in the central Sahara, usually southwest of the Tibesti Mountain. They initially mi-
grate westwards before turning anticyclonicly over West Africa to track eastwards over15

northern parts of the continent. Analysis of 20 yr of ECMWF ERA-Interim re-analysis
suggests that Sudano-Saharan depressions are rare and too shallow for causing suf-
ficiently high wind speeds for significant amounts of dust uplift (Schepanski and Knip-
pertz, 2011).

Other migrating depressions at low latitudes are surface signatures of African East-20

erly Waves (AEW). Based on upper-air soundings, Burpee (1972) shows that AEWs
form south of the African Easterly Jet (AEJ) at 700 hPa along 10◦ N. The AEJ results
from the horizontal temperature contrast between the hot Saharan air poleward and
the cooler air masses equatorward of the AEJ. Burpee (1972) suggests that the wind
shear at the AEJ is the origin of wave-like disturbances. More recent works suggest25

deep convection as a trigger of AEWs (e.g. Mekonnen et al., 2006; Thorncroft et al.,
2008). The main genesis region of AEWs remains controversial and ranges from 10◦ E
to 40◦ E (Burpee, 1972; Mekonnen et al., 2006; Thorncroft and Hodges, 2000; Thorn-
croft et al., 2008, and references therein) from where they propagate westwards with
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the mean flow. AEWs occur about every three to five days between June and Septem-
ber with a peak activity at the beginning of August (Burpee, 1972; Jones et al., 2003).
At 850 hPa, AEW signatures occur both north and south of the AEJ axis at 10◦ N and
20◦ N (Mekonnen et al., 2006). AEW signatures at 850 hPa are most frequently found
in West Africa with up to six events between May and October around 20◦ N and 10◦ W5

(Thorncroft and Hodges, 2000). AEWs are linked to variability of dust mobilization and
concentration over West Africa although the diurnal cycle seems similarly important
(Luo et al., 2004). Knippertz and Todd (2010) argue that dust emission associated to
AEWs is driven by embedded haboobs and NLLJs. Predominant emission in the late af-
ternoon and evening is an indication for haboobs (Marsham et al., 2011; Heinold et al.,10

2013) while morning emissions can be linked to the breakdown of NLLJs (Schepanski
et al., 2009; Fiedler et al., 2013). AEWs are also important for atmospheric transport of
dust aerosol (Jones et al., 2003) and are linked to tropical cyclone formation (Hopsch
et al., 2007).

Horizontal pressure gradients during the presence of depressions can be large15

enough for generating dust storms (Winstanley, 1972; Hannachi et al., 2011). In ad-
dition to wind speed, the presence of soil moisture can have important implications
for dust emission (Fecan et al., 1999). An increase of soil moisture strengthens the
bonding forces between soil particles constraining higher wind speeds for dust emis-
sion (Cornelis and Gabriels, 2003; Fecan et al., 1999). While precipitation amounts and20

therefore soil moisture are generally small in wide areas across the Sahara, cyclones
are an important source for rainfall in North Africa (Hannachi et al., 2011) and may be
able to moisten the soil sufficiently for increasing the threshold of dust emission onset.
This soil moisture effect is predominantly expected for cyclones along the North African
coast between December and May, and near-surface signatures of AEWs at the south-25

ern fringes of the Sahara desert between May and September. The magnitude of the
soil moisture effect during cyclone passage is, however, not well quantified.

The present study is the first climatological estimate of the mass of emitted dust
aerosol associated to depressions and migrating, long-lived cyclones in North Africa.

32489

http://www.atmos-chem-phys-discuss.net
http://www.atmos-chem-phys-discuss.net/13/32483/2013/acpd-13-32483-2013-print.pdf
http://www.atmos-chem-phys-discuss.net/13/32483/2013/acpd-13-32483-2013-discussion.html
http://creativecommons.org/licenses/by/3.0/


ACPD
13, 32483–32528, 2013

Dust emission by
cyclones

S. Fiedler et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

Depressions are defined as minima in the geopotential height at 925 hPa that are iden-
tified and tracked with an automatic algorithm. Minima in the field of geopotential height
are termed cyclones if they migrate, live for more than two days, and have a decreasing
core pressure at the beginning of their life cycle. The depression and cyclone tracks
are combined with dust emission calculations driven by ECMWF ERA-Interim data.5

Details of the method are explained in Sect. 2. Section 3 presents the results for the
climatology of depressions and cyclones for dust emission. Conclusions are drawn in
Sect. 4.

2 Method

2.1 Depression and cyclone identification10

The present study uses the depression tracks over North Africa for 1989–2008 re-
trieved by Schepanski and Knippertz (2011). Schepanski and Knippertz (2011) inves-
tigate Sudano-Saharan depressions by using the tracking algorithm from Wernli and
Schwierz (2006) with modifications for low latitudes. Threshold values are adapted and
the original input fields of mean sea level pressure are replaced by the geopotential15

height at 925 hPa that represent North African conditions better. The automated algo-
rithm determines minima relative to the adjacent grid cells and is applied to the ERA-
Interim re-analysis with a horizontal resolution of 1◦ (Dee et al., 2011). Even though the
input data set is six-hourly, minima are identified daily at 00:00 UTC in order to avoid
miss-tracking caused by the large diurnal cycle of the geopotential height at low levels20

over North Africa (Schepanski and Knippertz, 2011). The influence of the time of day
on a depression identification is shown by Maheras et al. (2001).

Once a minimum is identified, the corresponding area of the depression is deter-
mined by the closed contour that lies furthest away from the centre. The value of the
contour interval is 4 gpm corresponding to about 0.5 hPa (Schepanski and Knippertz,25

2011). Depressions are connected to a track if two consecutive positions lie within
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1000 km. This criterion allows a maximum speed of 11.6 ms−1 that is sufficient for
North Africa (Schepanski and Knippertz, 2011).

The criteria from Schepanski and Knippertz (2011) used to filter tracks of Sudano-
Saharan depressions are not applied here. Instead, a broader investigation of depres-
sions and migrating cyclones over North Africa is intended. Depressions are all identi-5

fied minima in the geopotential height at 925 hPa. The selection of migrating cyclones
from the original set of depressions requires generalized criteria applicable for the en-
tire domain and time period. Note that migrating cyclones include both near-surface
signatures of AEWs and cyclones. Both are termed cyclones in this paper and identi-
fied by the following filter:10

1. Cyclones have to be identified in at least three consecutive nights reflecting a life
time of 48 h as the minimum time period for a complete life cycle of a cyclone.
This assumption complies with life times given in the literature (Hannachi et al.,
2011; Bou Karam et al., 2010).

2. Each cyclone has to propagate over a pre-defined horizontal distance between15

genesis and lysis. The mean propagation speed is defined as the maximum dis-
placement during the life time of the system calculated from the range of longi-
tudes and latitudes of centre positions. The threshold for the propagation speed
is 5◦ per day corresponding to a mean cyclone speed of 5–6 ms−1. This gen-
erous criterion is well below migration speeds reported for cyclones over North20

Africa (Alpert and Ziv, 1989; Bou Karam et al., 2010; Knippertz and Todd, 2010;
Schepanski and Knippertz, 2011).

3. The propagation speed alone does not successfully exclude all identified cases
of the Saharan heat low, the mean position of which migrates over time. In order
to exclude most heat lows, the identified cyclones have to have a decreasing core25

pressure between the first and second night. This criterion reflects cyclogenesis
and successfully reduces the number of identified cyclones in summertime West
Africa. Tracks of filling cyclones in the Mediterranean region are also excluded by
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this criterion, particularly frequent in the east during spring. Sensitivity tests show
that reducing the number of cyclones in the Mediterranean basin has a negligible
effect on the contribution to dust emission (Sect. 3.5). This suggests that filling
cyclones with centres away from dust sources do not generate wind speeds suf-
ficiently large for mobilizing dust.5

2.2 Dust emission

Mineral dust emission is calculated for 1989–2008 with the dust emission model by
Tegen et al. (2002) following the experiment setup in Fiedler et al. (2013). The dust
model is driven by three-hourly 10 m-wind speeds and soil moisture of the uppermost
soil layer from ERA-Interim forecasts (Dee et al., 2011). These forecasts are for 12 h10

initialized at 00:00 and 12:00 UTC, and interpolated onto a horizontal grid of 1◦. ERA-
Interim re-analysis produces the best diurnal cycle of wind speed amongst state-of-the-
art re-analysis projects compared to flux tower observations over land (Decker et al.,
2012). Choosing ERA-Interim forecasts is motivated by the higher temporal resolution
compared to the six-hourly re-analysis product that is not sufficient for resolving all15

wind speed maxima during the day (Fiedler et al., 2013). Statistics of the near-surface
wind speed from these short-term forecasts are found to be close to the six-hourly
re-analysis of ERA-Interim (Fiedler et al., 2013).

Preferential dust sources are prescribed using the dust source activation frequency
map derived from satellite observations (Schepanski et al., 2007, 2009). A source is20

defined as a region where at least two dust emission events are detected between
March 2006 and February 2008 as in Fiedler et al. (2013). Depending on surface prop-
erties like vegetation fraction, soil moisture, and roughness length, dust emission oc-
curs in these sources when the particle-size dependent threshold of the 10 m-wind
speed is exceeded (for details see Marticorena and Bergametti, 1995; Tegen et al.,25

2002). Soil moisture has to be below 0.28 m3 m−3, the field capacity assumed for silt
and clay soil types. An experiment without soil moisture is run for estimating the effect
of water in the topsoil on dust emission.
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Calculating the contribution of depressions and cyclones to dust emission requires
the definition of an area affected by associated peak winds. The tracking algorithm
determines an area for the grid boxes lying within the outermost closed contour of the
geopotential height at 925 hPa at mid-night. This centre area is used for analysing the
track density per season (Sect. 3.1 and 3.2). Dust emission, however, may occur in5

an area larger than the centre, e.g. near the cold front. In order to include these dust
emissions in the climatology, a cyclone-affected area is approximated by a circle around
the identified minimum in the geopotential height. This area is calculated at mid-night
and used for selecting the three-hourly dust emission associated to the depression
or cyclone between 15:00 UTC of the previous day and 12:00 UTC of the same day10

(Sect. 3.4 and 3.5). The radius of this circle is set to 10◦, a value corresponding to
a latitudinal distance of 964 km at 30◦ N. The choice of 10◦ is justified by previous
studies (e.g. Bou Karam et al., 2010) and tested by sensitivity experiments. These
show that even when the radius of the circle is doubled, the spatial pattern of the
fraction of dust emission associated to cyclones shown in Sect. 3.5 is robust.15

Figure 1 shows the cyclone-affected area and false colour images derived from ther-
mal and infrared radiation measurements from the “Spinning Enhanced Visible and
Infrared Imager” (SEVIRI) of the geostationary Meteosat Second Generation (MSG)
satellite (e.g. Schepanski et al., 2007, 2009). The typical horizontal extent of these
cyclones, visible by the curling cloud band (red) and indicated by a circle around the20

cyclone centre, is on the order of 10◦. Dust aerosol is visible near the cloud band, but
parts of it is likely obscured by clouds. At 9 March 2013, dust emission also occurs
over southern West Africa (Fig. 1b), highlighted by an ellipse. These emissions are not
directly related to the cyclone but likely caused by a Harmattan surge associated with
the post frontal ridge (e.g. Knippertz and Fink, 2006).25
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3 Results

3.1 Climatology of depressions

Figure 2 shows the seasonal mean track density of depressions identified by the algo-
rithm. During winter, depressions are found over the Mediterranean basin with 40–100
events in the 20-yr period (Fig. 2a), i.e. 2–5 cyclones per winter. Hot spots of similarly5

large track densities lie to the south of the High Atlas and to the west of the Ethiopian
Highlands (refer to Fig. 5 for geographical terms). The origin of these depressions may
be partly related to lee troughs that are associated with closed contours in the geopo-
tential height at 925 hPa. In the case of the Ethiopian Highlands, the heat low that is
located here during winter (Lavaysse et al., 2009) may explain another large portion10

of identified depressions. The general location of depressions over the Mediterranean
Sea and the lee hot spot of the Atlas Mountains are in agreement with previous studies
(Trigo et al., 1999; Maheras et al., 2001). The exact number and location of hot spots,
however, depend on the underlying data set and identification technique (e.g. Maheras
et al., 2001; Hannachi et al., 2011; Hodges et al., 2011, and references therein).15

Depressions in spring are more frequent than in winter with 10–100 depressions over
most areas (Fig. 2b). The hot spot south of the High Atlas dominates the climatology
in the north with depression numbers around 200, i.e. ten depressions per season.
A secondary maximum can be identified at the northern side of the Hoggar Mountains
with up to 100 depressions. These two hot spots agree with the formation of spring-20

time cyclones from the literature, although the exact locations and frequencies differ
(Maheras et al., 2001; Hannachi et al., 2011). Other studies for springtime North Africa
find a single hot spot for depressions (Trigo et al., 1999). Reasons for these differences
are the choice of a different data basis, time period, identification method, as well as
the time of day due to the influence of daytime heating on heat lows (Maheras et al.,25

2001). Further hot spots that can be related to lee troughs are found southwest of all
mountains in the central Sahara due to the prevailing northeasterly Harmattan winds
during this season. Maxima in the vicinity of the Ethiopian Highlands and the Ennedi
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Mountains reach around 100 depressions. Wide areas in the centre of North Africa
have track densities around 20 depressions. The similarity to the location of the heat
low climatology by Lavaysse et al. (2009) suggests that these depressions are heat
lows.

Between June and August, West Africa has track densities of 40–200 depressions5

(Fig. 2c). Here, the Saharan heat low dominates the climatology while AEWs regularly
influence the meteorological conditions (Lavaysse et al., 2009; Thorncroft and Hodges,
2000; Luo et al., 2004). Similar track densities are found in the vicinity of mountains
where the Saharan heat low influences the occurrence of depressions, predominantly
at the Hoggar Massif (Lavaysse et al., 2009). The heat low over West Africa and the10

hot spots near mountains in the central Sahara are present in summer and autumn
but the relative importance changes (Fig. 2d). In autumn, the track density west of the
Ethiopian Highlands is larger with values around 200 depressions, while the track den-
sities over West Africa decrease to less than 100 depressions. This pattern is coherent
with the shift of the heat low from West Africa towards the southeast near the equator15

(Lavaysse et al., 2009). Heat lows and depressions in the vicinity of mountains seem to
dominate the climatology of depressions throughout the year. Migrating cyclones and
surface signatures of AEWs are separately investigated in the following section.

3.2 Climatology of cyclones

Migrating cyclones and surface signatures of AEWs are filtered as described in20

Sect. 2.1. The term cyclone is used for both types in the following. Cyclones regu-
larly form over North Africa and the Mediterranean region, but the number of events
is substantially smaller than the number of depressions. In the annual mean, ten cy-
clones occur in the sub-domain investigated, namely 0◦ to 40◦ N and 20◦ W to 45◦ E.
Figure 3a shows the seasonal fraction of the total number of 196 cyclones that pass25

the filter. The analysis reveals that most of the cyclones form between March and May
with 37 %. The remaining seasons have fewer events with roughly 20 % each.
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The time series of the total number of cyclones per year is shown in Fig. 3b. The year-
to-year variability of cyclone activity is relatively large with a factor three to four. The
years with most identified events are 2003 with 19 cyclones, followed by 2002 with 16,
1996 and 1999 with 14 events each. The most inactive years are 1998, 2000, 2001 and
2007 with five to seven cyclones each. Most of this variability can be explained by the5

cyclone activity during spring. The year-to-year variability for this season is particularly
large. Years with a large event number experience 6–12 cyclones, while years with low
activity have one to three events between March and May.

Figure 4 shows the spatial distribution of cyclone centres per season in the 20-yr pe-
riod. The dominant cyclone track between December and February stretches from the10

Aegean Sea to Cyprus (Fig. 4a). Some areas in this track count at least ten cyclones
in the period, i.e. one cyclone every second year. Including filling cyclones doubles
the number of cyclones passing the eastern Mediterranean. Few cyclones are situated
over the African continent during winter. Maxima around six cyclones are limited to ar-
eas along the northern coast between Tunis, Tunisia, and Tobruk, Libya. Similarly large15

values are found north of the Great Eastern Erg and the south-eastern side of the Tell
Atlas, Algeria and Tunisia. Up to six cyclones track north of the Hoggar Mountains,
Algeria, south of the High Atlas Range, Morocco, and south of Tripoli, Libya.

Between March and May, cyclones occur most frequently over North Africa (Fig. 4b).
Cyclones at the southern side of the High Atlas are identified up to eight times between20

1989 and 2008. Up to ten cyclones track over areas of the Great Eastern Erg between
the Tell Atlas Mountains and the Hoggar Massif, Tunisia and Algeria. This cyclone
frequency is comparable to the cyclone track in the wintertime Mediterranean Sea
(Fig. 4a and b). The eastern side of the Al-Hamra Plateau, Libya, also shows around
ten cyclones which is consistent with the reported ideal conditions in this region (Alpert25

et al., 1990; Pedgley, 1972).
The peak cyclone activity north of 25◦ N in winter and spring rapidly decreases as the

year progresses. Cyclones are rare in summer with maxima of two cyclones (Fig. 4c).
Maxima of the track density are shifted southward to West Africa with six to ten events
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along 20◦ N. Here, the cyclones are connected to AEWs that are strong enough to
form a signature near the surface. It is interesting that the track density peaks in the
lee of mountains similar to the springtime maximum in the north. These hot spots are
situated at the western sides of the mountains Tibesti, Aïr, and Adrar des Iforas. The
peak at the Tibesti is particularly strong with 8–10 cyclones. The location suggests that5

the interaction of the flow with mountains aid the deepening and formation of closed
contours in the geopotential height at 925 hPa. A much larger area of maximum track
densities of 5–10 is found over Mali and Mauritania centred around 20◦ N, a region
known for frequent occurrence of AEW signatures at higher altitudes (Thorncroft and
Hodges, 2000; Mekonnen et al., 2006). The spatial pattern of cyclone tracks is similar10

in autumn, but the absolute number is smallest (Fig. 4d). The regions of most frequent
cyclone occurrence are summarized in Fig. 5. These are the northern fringes of North
Africa between December and May and West Africa from June to August. The charac-
teristics of the cyclones are investigated in the following.

3.3 Characteristics of cyclones15

Figure 6 shows the life time and zonal displacement of the identified cyclones for areas
north and south of 20◦ N over the continent. In the north, cyclogenesis occurs 56 times
during the 20-yr period, more than half of which form between March and May (32
cyclones). Most of these cyclones have their origin in the vicinity of the Atlas Mountains
with 26 cyclones between 15◦ W and 10◦ E. Cyclones in the north frequently live for20

three days in spring (Fig. 6a). Life times between five and seven days are similarly
common for the season. Springtime cyclones predominantly follow eastward tracks
in the north (Fig. 6c). The migration distance is most often 30◦ to the east, closely
followed by 20◦ and 10◦. Some cyclones with eastward trajectories also form south
of 20◦ N during spring (Fig. 6d). Wintertime cyclones have a similar distribution of the25

migration direction. The prevailing eastward migration in the north is in agreement with
previous studies (e.g. Alpert et al., 1990; Hannachi et al., 2011).
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South of 20◦ N, the seasonality of cyclogenesis is different. Out of 50 cyclones form-
ing here in total, 36 % occur between June and August followed by 26 % and 28 % in
autumn and spring, respectively. Figure 6b shows the cyclone life time for the south.
Here, the majority of cyclones are identified over three to four days. Summertime cy-
clones also live frequently for six days. The prevailing migration direction during sum-5

mer and autumn is westwards by mostly 20–30◦ (Fig. 6d) that is consistent with the
propagation of AEWs (Burpee, 1972; Thorncroft and Hodges, 2000).

3.4 Dust emission associated to depressions

Annually and spatially averaged across dust sources of North Africa, 55 % of the dust
emission is associated to depressions. Regionally larger fractions of dust emission co-10

incide with depressions that are shown in Fig. 7. Areas in northern and western Africa
have dust emission associated to depressions of up to 80 %. The seasonal distribution
of these fractions is shown in Fig. 8. Contributions from depressions to dust emission
during winter have values below 50 % in most of North Africa (Fig. 8a). Larger fractions
are associated to depressions in West Sahara, Libya, Tunisia, and Sudan with values15

of up to 80 %. These hot spots coincide with the frequent formation of depressions in
the north of the continent and in the lee of the Ethiopian Highlands. Spring shows even
larger contributions to dust emission from depressions in wide areas to the north of
25◦ N and west of 10◦ E with up to 90 % (Fig. 8b).

Depressions in summer are linked to up to 90 % of the regional dust emission across20

most of North Africa (Fig. 8c). In autumn, similarly large values for dust emission as-
sociated to depressions are found along the northern and western margins of the con-
tinent, west of the Hoggar Massif and west of the Ethiopian Highlands (Fig. 8d). The
large and widespread contributions from depressions in summer is surprising as other
dust-emitting processes have been discussed in the literature (e.g. Fiedler et al., 2013;25

Heinold et al., 2013). An important mechanism for dust emission in summertime West
Africa is the downward mixing of momentum from NLLJs. NLLJs are frequently embed-
ded along the margins of the West African heat low (Fiedler et al., 2013). Estimating
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the contribution to dust emission from the heat low includes the emissions associ-
ated to NLLJs and possibly other processes occurring within the assumed radius of
10◦. The example of the embedded NLLJ illustrates that the results for the dust emis-
sion associated to depressions are not necessarily excluding other processes. These
contributions to dust emission are expected to change if only migrating and long-lived5

depressions are taken into account. These systems, termed cyclones in the following,
are investigated next.

3.5 Dust emission associated to cyclones

3.5.1 Seasonal climatology

The climatology is shown as absolute emissions associated to migrating cyclones first10

followed by the presentation of the relative contribution to dust emission. Figure 9
shows the seasonal total of dust emission and the number of intense emission events
associated to cyclones averaged over the 20-yr period. Intense emission is defined for
fluxes greater than 10−5 gm−2 s−1 following Laurent et al. (2010). Across the continent
and throughout the year, the seasonal total of dust emission within the cyclone-affected15

area (Sect. 2.2) is most frequently less than 1 gm−2. Single regions and seasons, how-
ever, show distinct maxima of dust emission of up to 10 gm−2 that lie north of 20◦ N.
Between December and February, peak emissions in the vicinity of the Atlas and Hog-
gar Mountains as well as in Libya are 2–4 gm−2 (Fig. 9a). The areas where at least
three intense emission events per season occur lie mostly away from the areas with20

the largest total emission. This points at moderate but frequent dust emissions in winter
hot spots, while rather small total emissions in some regions are generated by a few
intense events.

Spring shows larger dust emission of 4–10 gm−2 associated to cyclones over a wider
area (Fig. 9b). It is this season when the largest dust emission associated to cyclones25

occur. Peak emissions by cyclones are found south of the foothills of the Atlas Moun-
tains, and as far east as the western fringes of the Libyan desert. Spring has more than
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three intense emission events over most of the region north of 20◦ N. Areas with sea-
sonal emission maxima have even larger numbers of intense emission events of more
than six, partly more than nine events. This suggests that intense events substantially
contribute to the largest emission amounts associated to springtime cyclones. It is
spring when the temperature contrast between land and sea is largest which favours5

the development of cyclones with high wind speeds.
The findings change dramatically in summer when maxima of the seasonal total dust

emission associated to cyclones are situated over West Sahara and western parts of
Mauritania with up to 6 gm−2 (Fig. 9c). More than six intense emission events are lim-
ited to the West African coast and coincide well with the largest seasonally total of dust10

emission. Here, surface signatures of AEWs may be deepest and cause the highest
wind speeds (e.g. Thorncroft and Hodges, 2000). The coastal effect may be a contribut-
ing factor for strong winds in this region. In autumn, the number of intense emissions
is here smaller with three events (Fig. 9d). It is this season when the seasonal total of
dust emission associated to cyclones is smallest over most of North Africa with less15

than 1 gm−2.
The fraction of the dust emission associated to migrating and long-lived cyclones

relative to the total amount emitted per year is 4 % annually and spatially averaged
over dust sources. Figure 10 shows the distribution of the fractional contributions of
cyclones annually averaged. Single regions in the northeast of Africa have contribu-20

tions to dust emission by cyclones exceeding 10 %. The seasonal mean fraction of
dust emission associated to cyclones is regionally larger in single seasons which are
shown in Fig. 11. From December to February, substantial dust emission fractions as-
sociated to cyclones occur in areas north of 20◦ N only (Fig. 11a), because of the
limitation of cyclone tracks to northern locations (Fig. 4a). Here, the largest dust emis-25

sion amounts associated to cyclones reach typical values of 5–15 % and lie between
15◦ W and 15◦ E. The dominant cyclone track over the eastern Mediterranean Sea in
winter does not cause the majority of dust emissions in North Africa indicated by dust
emission fractions below 5 % in regions east of 15◦ E. In spring, however, larger dust
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emissions of 10–25 % are associated to cyclones in this region (Fig. 11b) when the
main cyclone track shifts southwards onto the continent (Fig. 4b). This is the overall
largest area and magnitude of cyclone contribution to dust emission in North Africa.
Smaller areas with similar fractions of dust emission associated to migrating cyclones
in spring lie to the south of the Atlas Mountains, to the northeast of the Hoggar Massif5

and in the Tibesti Mountains.
The dust emission associated to cyclones between June and August is shown in

Fig. 11c. Contributions from regions north of 20◦ N drop to values below 5 % while iso-
lated areas in Mali and Mauritania have contributions of 5–15 %. Typical contributions
of cyclones to dust emission remain similar in autumn but the spatial pattern of hot10

spots changes (Fig. 11d). Higher values of around 15 %, now, occur in the centre of
the Sahara, in the Western Great Erg and in the Libyan Desert (Fig. 11c and d). It is,
however, important to underline that the dust emission flux connected to cyclones in
the south is relatively small with seasonal totals below 1 gm−2. This implies that, even
though the relative contribution is comparable to the north in winter and spring, the15

importance in terms of total dust mass is smaller (Fig. 9d).
In light of the large fractional contribution from depressions to dust emission

(Sect. 3.4), the overall fractional contribution of migrating cyclones is surprisingly small.
Springtime contributions of depressions of up to 90 % in the lee of the High Atlas
change to contributions below 15 % when migrating cyclones are taken into account20

only (compare Fig. 8b and 11b). Over Libya, contributions from depressions are with
values around 50 % also larger than the contribution from cyclones with maxima around
25 % during spring. Although a reduction is expected from the climatology with depres-
sions to the one with cyclones, the magnitude of it is rather large particularly in the
lee of the Atlas Mountains with a factor of six. The High Atlas is the region where the25

presence of lee troughs in the climatology of depressions is expected. These results
indicate that only a few of these lee troughs develop to dust-emitting cyclones. Large
and widespread dust emission associated to surface signatures of AEWs during sum-
mer do not occur as seen in the climatology of depressions. This result gives evidence
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that most of the dust emitted during the presence of depressions is due to the Saharan
heat low or other mechanisms embedded like NLLJs (Sect. 3.4).

Despite their small contributions to the total dust emission amount in the north,
intense emission fluxes are regularly associated to migrating cyclones in spring
(Fig. 11b). This aspect is analyzed further by defining a dust emission anomaly as5

the quotient of the dust emission associated to cyclones and the 20-yr mean of the
dust emission flux in the same month. Figure 12 shows this anomaly factor along
with the dust emission flux spatially averaged across dust-emitting grid boxes. The
largest dust emission fluxes occur between February and May with values larger than
1.5×10−6 gm−2 s−1. It is this time of year when the largest total dust emission occur10

over the north (Fiedler et al., 2013). The anomaly factor during this season has val-
ues between four and eight, i.e. the dust emission associated to springtime cyclones
is four to eight times larger than the long-term mean of the dust emission flux. The
dust emission is smaller during summer with fluxes of 0.7–1.3×10−6 gm−2 s−1 while
the anomaly factors increases to values of five to nine. Even larger anomaly factors15

are found between September and November with up to 20, but both the dust emis-
sion flux and the number of cyclones is then smallest. This result underlines that even
though the total emission associated to migrating cyclones is rather small compared
to the absolute emission in the north, the emission events during cyclone passage are
particularly intense.20

3.5.2 Dependency on cyclone quadrant

The areas of largest dust emission amounts associated to cyclones reside close to hot
spots of cyclone tracks (Sect. 3.2). However, hot spots for cyclones and dust emission
(Figs. 4 and 11) do not match perfectly due to two factors. On the one hand the loca-
tion of peak winds within the cyclone-affected area is often away from the actual centre.25

On the other hand the parameterization of dust sources restricts the region of active
emission within the cyclone-affected area. The map of potential dust sources enables
dust emission in most areas of North Africa so that the location of peak winds is ex-
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pected to be the dominant factor. The spatial distribution of the dust emission within
the cyclone-affected area is investigated in the following. Since the emitted mass as-
sociated to cyclones is relatively small south of 20◦ N in general (Sect. 3.5.1), only the
northern sub-domain is taken into account.

Figure 13 shows the annual cycle of the fraction of dust emission per quadrant of5

the cyclones north of 20◦ N spatially averaged. The results highlight that most dust
is emitted in the northern quadrants with typical mean values of 30–55 % between
November and March. In April, dust emission prevails in the northeast and southeast
with about 30 % contribution each. Dust emission associated to cyclones in May is
roughly equal distributed across the quadrants. June to September have clear maxima10

of dust emission in the southwest with 60–80 %. The total mass emitted between June
and September, however, is smaller than at the beginning of the year (Fig. 9). Cyclones
in October have most dust emission in the southeast, but the integrated mass of dust
emission is smallest during autumn (Fig. 9d).

These result can be linked with the position of the highest wind speeds. In the case15

of a well-defined extra-tropical cyclone, the cool front typically lies to the west of the
cyclone centre initially and moves towards the south and east thereafter. Peak winds,
and therefore dust emission, are most likely at and behind the cool front as well as close
to the cyclone centre due to the increased horizontal gradient of the geopotential height
in these areas. Dust emission would primarily occur in the southwest initially, followed20

by prevailing emission in the southeast. At a later life stage, an extra-tropical cyclone
typically forms an occlusion causing peak winds near the cyclone core. Dust emission
may then form in all quadrants similarly. Integrated over the entire life time, most dust
emission may be expected in southern quadrants if the cyclone has an extra-tropical
character. While this is not found for the spatial average, examination of the spatial25

distribution of dust emission per quadrant (not shown) reveals that areas south of the
Atlas Mountains show indeed more than 50 % of the dust emission in the southwest
or southeast quadrants between February and May. This distribution complies with
the expectation for extra-tropical cyclones. However, the lack of a southern maximum
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in the spatial mean in winter and spring suggests that cyclones do not show typical
characteristics of extra-tropical cyclones everywhere. Evaluating the spatial distribution
of the dust emission per quadrant shows that dust emission in northern quadrants
primarily occur in the central Sahara during spring. Here, the heat low lies typically
to the south and relatively higher pressure northwards. This implies that instead of5

a classical frontal structure, a large horizontal gradient in the geopotential height occurs
at the northern side of a large fraction of cyclones.

Summertime dust emission is mainly situated in the southwest of the cyclone centre
in the spatial mean. Over West Africa, even larger emission fractions of up to 90 %
occur in the southwest (not shown). The majority of cyclones during this season live10

particularly long and migrate westwards (Fig. 6a and c) pointing at surface signatures
of AEWs. The dominant quadrant during this time of year is well in agreement with
the position of emission ahead of AEWs where NLLJs are expected (Knippertz and
Todd, 2010). The automated detection algorithm from Fiedler et al. (2013) is used for
estimating the mean fraction of dust emission within the cyclone-affected area that15

coincide with the occurrence of NLLJs. The result suggests peak contributions from
NLLJs to the dust emission associated to cyclones of 10–30 % over parts in West Africa
(not shown). Another important driver for dust emission in association with AEWs are
haboobs typically developing to the east of an AEW (Knippertz and Todd, 2010). The
missing physical parameterization of these cold pools, as an important mechanism for20

dust emission during this time of the year and region (Heinold et al., 2013), may cause
an underestimation of the dust emission to the east of AEWs. The diurnal cycle of dust
emission indicates driving mechanisms on a sub-daily scale that is analyzed next.

3.5.3 Differences per time of day

Figure 14a shows the annual cycle of the total dust emission per time of day within25

the cyclone-affected area north of 20◦ N. Cyclones deflate a substantial amount of
mineral dust in late winter and spring. Maxima occur during mid-day with peaks of
90–110 gm−2 in March, and 70–90 gm−2 in May in contrast to values below 20 gm−2
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between June and January (Fig. 14a). The dust emission during the influence of cy-
clones has a diurnal cycle with a distinct maximum during the daytime. Emission at
night has typical values around 10 gm−2 and never exceeds 30 gm−2 during spring
(Fig. 14a). At 09:00 UTC dust emission is often twice as large with maximum values of
60 gm−2 in May. Emissions at 12:00 and 15:00 UTC are even larger by a factor of two5

to four.
The diurnal differences can be explained by the development of the boundary layer.

Dust emission occurs when the momentum transport to the surface is sufficiently large
to exceed the threshold for emission onset. The stabilizing effect of surface cooling at
night leads to a decrease of vertical momentum transfer to the surface. In contrast to10

the night, reduced stability during the day enables a larger transport of momentum to
the Earth surface. It is this momentum transport that increases the near surface wind
speed and mobilizes dust particles. The downward mixing of momentum is expected
to be largest, when the daytime boundary layer is sufficiently deep for reaching a layer
where high wind speed prevails, typically the free troposphere. Winter and spring is15

characterized by a relatively strong baroclinic zone at which the cyclone forms. The
thermal wind describing the change of geostrophic wind over height is stronger the
deeper (shallower) the warm (cool) air mass. The North African air mass is particu-
larly deep compared to the air polewards due to the strong heating of the continent.
The thermal wind is thus relatively large implying a strong increase of the geostrophic20

wind with height in the lower troposphere. Along with typically deep daytime boundary
layers over North Africa momentum from the free troposphere is efficiently transported
towards the surface. In the Sahara, the boundary layer reaches its largest depth at or
closely after mid-day (Culf, 1992), that coincides well with the mid-day peak of dust
emissions shown here. The time of maximum dust emission is in agreement with the25

observation of suspended dust in cyclones shown in Fig. 1.
The emission flux at 09:00 UTC in May, however, is almost as large as the mid-day

values pointing at embedded NLLJs as a driving mechanism. The top of Fig. 14a shows
the fraction of dust emission within the cyclone-affected area that is associated to
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NLLJs. The latter are defined and automatically identified as in Fiedler et al. (2013).
Based on these results, dust-emitting NLLJs are not frequently embedded in the
cyclone-affected area with less than 10 % in winter and spring. This finding is well in
agreement with the generally small dust emission amount associated to NLLJs during
winter and spring in the north (Fiedler et al., 2013). The larger dust emission flux from5

cyclones at 09:00 UTC in May is, therefore, not linked to NLLJs. It seems most plausible
that the momentum from the free troposphere is more efficiently mixed downwards in
May than earlier in spring and winter. This is likely caused by a larger and earlier onset
of the solar irradiation in late spring aiding the development of the daytime boundary
layer.10

NLLJs that can be embedded in AEWs are linked to 20 % of the dust emission in
the cyclone-affected area in June and around 10 % in July and August. However, the
total dust emission of summer is relatively small compared to spring. Haboobs may be
the key driver in West Africa during summer (Heinold et al., 2013). AEWs are typically
accompanied by deep moist convection the cold downdrafts of which may form an15

haboob (e.g. Knippertz and Todd, 2010). Haboobs are poorly represented in the 10 m-
wind field of ERA-Interim (Marsham et al., 2011). Another reason for overall small dust
emissions from AEWs may be the soil moisture effect that is discussed in the following
section.

3.5.4 Impact of soil moisture20

The dust emission amount associated to cyclones is smaller than the contribution esti-
mated for depressions by one order of magnitude. One reason may be the weakening
or suppressing effect of soil moisture on dust emission. While arid conditions prevail in
North Africa, cyclones can produce rainfall. The magnitude of the effect is studied with
a dust emission calculation without accounting for moisture (Sect. 2.2).25

Figure 14b shows the annual cycle of the fraction of dust emission suppressed by the
presence of soil moisture along with the total dust emission when moisture is taken into
account as a benchmark. During late winter and spring, the time when dust emission
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associated to cyclones show a clear maximum of 250–380 gm−2, soil moisture sup-
presses roughly 10 % of the dust emission spatially averaged across the north. Other
months show values ranging from 5 % to 20 %, but the total dust emission is smaller
than 100 gm−2 in July and smaller than 80 gm−2 during the rest of the year. It is inter-
esting that the value for the emission reduction by soil moisture during cyclone passage5

for the 20-yr period is of the same order of magnitude as the soil moisture effect for ha-
boobs in August 2006 (Heinold et al., 2013). The spatial distribution of the fraction of
dust emission associated to cyclones from Sect. 3.5.1 is robust against excluding the
soil moisture in the dust emission calculation.

4 Conclusions10

The present work provides the first climatological estimate of the amount of dust emis-
sion associated to depressions and cyclones over North Africa for 1989–2008. Dust
emission simulations with the model by Tegen et al. (2002) driven by ERA-Interim fore-
casts show large dust emissions north of 20◦ N for December to May (Fiedler et al.,
2013). Atmospheric depressions are tracked following the method from Schepanski15

and Knippertz (2011) for estimating the amount of dust emission associated to both
depressions and migrating, long-lived cyclones. Depressions are abundant over North
Africa due to the frequent formation of lee troughs and heat lows with maxima in the
track density of up to 100 events. Cyclones migrating and living longer than 48 h, how-
ever, are less frequent with a total of 196 cyclones across North Africa. The cyclone20

track density compared to depressions is smaller by a factor ten. The smaller number
of cyclones suggests that only few depressions, e.g. in the lee of the Atlas Mountains
during spring, become migrating and long-lived cyclones.

The cyclone climatology highlights that 37 % of cyclones affecting North Africa occur
in spring. Their centres most frequently lie north of 20◦ N with a clear cyclone track25

stretching from south of the Atlas Mountains towards the Eastern Mediterranean. This
spatial pattern of the track density is in agreement with previous studies (Alpert et al.,
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1990; Hannachi et al., 2011; Thorncroft and Hodges, 2000; Trigo et al., 1999; Maheras
et al., 2001). Springtime cyclones predominantly migrate eastwards, and live for three
to seven days. The year-to-year variability of cyclones is largest during this season.

The depression and cyclone tracks are applied to the dust emissions for 1989–2008
in order to estimate their relative contribution to the dust emission amount. The results5

highlight that depressions coincide with 55 % of the dust emission while migrating and
long-lived cyclones are associated with 4 % of the dust emission annually and spatially
averaged for North African dust sources. Regionally larger contributions from both de-
pressions and cyclones are found that vary with the season. The largest contributions
from cyclones to dust emission are found during spring over wide areas in Libya with10

typically 15–25 %. The seasonal total of dust emission associated to cyclones is, here,
amongst the largest with regionally 4–10 gm−2. This dust emission amount associated
to cyclones is up to one order of magnitude smaller than the seasonal mean dust emis-
sion for spring of regionally 10–50 gm−2 over Libya (Fiedler et al., 2013). Similar dust
emission amounts associated to cyclones and fractional contributions to the seasonal15

total emission are found in isolated areas south of the Atlas Mountains. In contrast
to cyclones, depressions show here contributions to dust emission with up to 90 % of
the seasonal emission. These results suggest that the few migrating and long-lived cy-
clones do not emit the majority of dust aerosol in the north. However, the analysis of
the emission flux magnitude reveals that emission events associated to cyclones are20

particularly intense. The dust emission flux during cyclone passage is larger than the
climatological mean by a factor of four to eight. Another interesting aspect is that the
dust emission associated to springtime cyclones is substantially larger during mid-day
than at night by a factor of three to five. This result suggests that the growth of the
boundary layer into the baroclinic zone of the cyclone is important for generating peak25

winds that are strong enough for mobilizing mineral dust. The effect of soil moisture on
dust emission within the cyclone-affected area is a weakening on the order of 10 %.

In summer, AEWs play a role for dust emission in West Africa. It has been suggested
that AEWs amplify here sufficiently for forming a signature close to the surface (Thorn-
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croft and Hodges, 2000). The results of the present study indicate that maximum con-
tributions of AEWs to dust emission are 5–15 % but these are limited to isolated areas.
The majority of the emissions within the cyclone-affected area is found in the south-
western quadrant of the AEW signature, i.e. the sector ahead of AEWs with northerly
winds and potential NLLJ formation (Knippertz and Todd, 2010). NLLJs, defined as in5

Fiedler et al. (2013), coincide with 10–20 % of the monthly emissions associated to
cyclones during summer while there are less than 10 % during the rest of the year.
Larger dust emissions at the eastern side of AEWs are expected when haboobs are
represented that are currently not parameterized but relevant for dust emission appli-
cations (Heinold et al., 2013). Contrary to AEWs, summertime depressions, like the10

Saharan heat low, coincide with up to 90 % of the dust emission across wide areas
of North Africa. NLLJs form along the margins of the Saharan heat low (Fiedler et al.,
2013) that are at least in parts included in the summertime dust emission associated
to depressions.

In conclusion, the influence of depressions is important for dust emission across15

North Africa throughout the year. Migrating cyclones with life times of more than two
days are comparably rare and do not substantially contribute to the total dust emission
mass in most regions. However, cyclones generate intense dust emission fluxes mak-
ing them nevertheless important for dust emission modelling. Large parts of the clima-
tological dust emission maximum between November and May north of 20◦ N shown in20

Fiedler et al. (2013) are not associated to depressions and cyclones investigated here.
Harmattan surges developing in consequence of post cold frontal ridging are proposed
as another mechanism capable of emitting large amounts of dust aerosol. This dust
storm type will be subject of future work.
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a) 20-02-2013, 12 UTC b) 09-03-2013, 15 UTC c) 05-04-2011, 15 UTC

©2013 EUMETSAT ©2013 EUMETSAT ©2013 EUMETSAT

L

Harmattan surge

LL

Fig. 1. Observations of cyclones and associated dust aerosol over North Africa. Shown here
are false-colour images from MSG-SEVIRI (e.g. Schepanski et al., 2007) indicating mineral
dust aerosol (pink) and clouds (red and black). Circles and ellipse mark the cyclone-affected
area with a radius of 10◦ and dust emission associated to a Harmattan surge, respectively.
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Fig. 2. Track density of all identified depressions. Climatology of total depression number for
(a) December–February, (b) March–May, (c) June–August, and (d) September–November for
1989–2008 based on the depression centre defined by the outermost closed contour in the
geopotential height at 925 hPa from the tracking algorithm (Sect. 2.1). Contours show orography
in steps of 200 m.
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37%

Fig. 3. Seasonal and interannual variations of long-lived and migrating cyclones. (a) Seasonal
distribution of cyclones and (b) time series of cyclones in the sub-domain 0◦–40◦ N and 20◦ W–
45◦ E for 1989–2008.
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Fig. 4. Track density of long-lived and migrating cyclones. Climatology of total cyclone number
for (a) December–February, (b) March–May, (c) June–August, and (d) September–November
for 1989–2008 based on the cyclone centre defined by the outermost closed contour in the
geopotential height at 925 hPa from the tracking algorithm (Sect. 2.1). Contours show orography
in steps of 200 m.
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J une - August A

Fig. 5. Schematic overview on regions of most frequent cyclone occurrence. Contours show
orography in steps of 200 m based on ERA-Interim. Geographical terms used in the text are
indicated.
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Fig. 6. Histograms of characteristics from long-lived and migrating cyclones. Cyclone life times
for 1989–2008 forming (a) in the north (15◦ W–35◦ E, 20◦ N–32◦ N), and (b) in the south (15◦ W–
35◦ E, 0◦ N–20◦ N); and zonal displacement of cyclone centres during their life time forming (c)
in the north, and (d) in the south.

32520

http://www.atmos-chem-phys-discuss.net
http://www.atmos-chem-phys-discuss.net/13/32483/2013/acpd-13-32483-2013-print.pdf
http://www.atmos-chem-phys-discuss.net/13/32483/2013/acpd-13-32483-2013-discussion.html
http://creativecommons.org/licenses/by/3.0/


ACPD
13, 32483–32528, 2013

Dust emission by
cyclones

S. Fiedler et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

Fig. 7. Annual fraction of dust emission amount associated to depressions. Shown is the contri-
bution to the total dust emission in percent averaged for 1989–2008. Contours show orography
in steps of 200 m.
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Fig. 8. Seasonal fraction of dust emission amount associated to depressions. Shown are con-
tributions in percent for (a) December–February, (b) March–May, (c) June–August, and (d)
September–November averaged for 1989–2008. Contours show orography in steps of 200 m.
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Fig. 9. Seasonal dust emission associated to long-lived and migrating cyclones. Shown are
mean emissions (shaded) for (a) December–February, (b) March–May, (c) June–August, and
(d) September–November averaged for 1989–2008. Black contours show orographic height in
steps of 200 m. Blue contours show the number of intense dust emission events, defined by
a flux larger than 10−5 gm−2 s−1 following Laurent et al. (2010), in steps of three events.
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Fig. 10. Annual fraction of dust emission amount associated to long-lived and migrating cy-
clones. Shown is the contribution to the total dust emission in percent averaged for 1989–2008.
Contours show orography in steps of 200 m.
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Fig. 11. Seasonal fraction of dust emission amount associated to long-lived and migrating
cyclones. Shown is the contribution to the total dust emission in percent for (a) December–
February, (b) March–May, (c) June–August, and (d) September–November averaged for 1989–
2008. Contours show orography in steps of 200 m.
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Fig. 12. Intensity of dust emission fluxes associated to long-lived and migrating cyclones. An-
nual cycle of the dust emission flux (red) and the intensity of the dust emission associated
to cyclones shown as anomaly factor (blue) averaged over dust-emitting grid boxes for 1989–
2008. The anomaly factor is defined as the quotient of the dust emission flux associated to the
cyclone and the 20-yr mean of the dust emission flux of the same month.
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Fig. 13. Monthly fraction of dust emission from the four quadrants of long-lived and migrating
cyclones averaged for the northern sub-domain (15◦ W–40◦ E and 20◦ N–40◦ N) and for 1989–
2008.
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Fig. 14. Total dust emission amount associated to long-lived and migrating cyclones. Annual
cycle (a) of dust emission for different times of the day (colour) and of the fraction of dust
emission associated with cyclones coinciding with NLLJ events; (b) of the total dust emission
and of the fraction of dust emission suppressed by soil moisture. Values are spatially integrated
over the northern sub-domain (15◦ W–40◦ E and 20◦ N–40◦ N) and monthly averaged over 1989–
2008. NLLJ events are identified as in Fiedler et al. (2013).
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